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Statistical methods for identifying differentially 
Expressed genes in microarray data 

Bindu Punathumparambath, Sebastian George, Kannan V. M. 
 

Abstract— Microarray is a recently developed functional genomic technology that has powerful applications in a wide array of biological research areas, 
including the medical sciences, agriculture, biotechnology and environmental studies. One of the important problems in the analysis of microarray data is 
the identification of differentially expressed genes. Commonly used approaches for identifying differentially expressed genes are fold change, 
standard t-test, significance analysis of microarrays (SAM) and regularized t-test (Cyber-T). In the present study the generalized p-value method is used 
to test the differential expression of individual genes. We used the environmental microarray data set to test the proposed method and compared with 
existing methods considering univariate testing problem for each gene. Numerical results confirmed the superiority of the procedure based on the gen-
eralized p-value technique to identify genes with a low level of false discovery rate. 
 
Index Terms— Environmental microarray data, Gene differential expression, Generalized p-value, Multiple hypothesis testing.   

——————————      —————————— 

1 INTRODUCTION                                                                     

NA microarra have been used to monitor changes in 
gene expression during important biological processes 

and to study variations in gene expression across collections of 
related samples (for example, tumor samples from patients 
with cancer). These experiments compare two different sam-
ples of cDNA coloured with different dyes (red and green) to 
measure the intensity of fluorescence after hybridization. This 
method allows us to compare a large amount of data simulta-
neously in order to identify and quantify genes which are dif-
ferentially expressed. Microarray experiments typically consist 
of intensity measurements of thousands of genes. The large 
volume of data generated from these experiments need effi-
cient and proper statistical methods for deriving valid conclu-
sions and has created tremendous opportunities for the statis-
ticians to develop ppropriate statistical tools for analysing 
these datasets. 

After normalization, gene expression distribution 
generally presents heavier tails than Gaussian distribution and 
have asymmetry of varying degrees with a sharp peak, due to 
the bulk of the mass at the middle. The gene expression distri-
bution has been modelled using several densities.  In [9], the 
gene expression distribution is fitted using the asymmetric 
Laplace distribution. In [4], the distribution of gene expression 
is modelled using asymmetric type II compound Laplace dis-
tribution. [3] introduced a family of skew-slash distributions 
generated by normal kernel, skew-slash distributions generate 
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generated by Cauchy kernel ([7]),  skew-slash t and skew-slash 
Cauchy distributions ([6]) and asymmetric slash Laplace dis-
tribution ([5]) for modelling microarray gene expression data. 
 An important and common problem in microarray 
experiments is the detection of genes that are differentially 
expressed in a given number of classes. The classes may corre-
sponds to tissues or cells. A straightforward approach to the 
identification of differentially expressed genes is to perform a 
univariate analysis of group mean differences for each gene, 
and then identify those genes that are most statistically signifi-
cant. The large number of genes on a microarray, will lead to 
the identification of many genes that are not truly differential-
ly expressed (false discoveries). Fold change is the simplest 
method with an arbitrary cut-off value used to determine dif-
ferentially expressed genes. This method is unreliable as it 
does not take into account the statistical variability. In order to 
determine statistical significance, t–test can be performed for 
each gene. However, when many hypotheses are tested the 
probability of a type I error (false positive) occurring increases 
sharply with the number of hypotheses. 
 The problem of simultaneously testing a large num-
ber of hypotheses has generated a great amount of interest. [1] 
introduced the concept of False Discovery Rate (FDR). FDR is 
defined as the expected value of the ratio of the number of 
incorrectly rejected hypotheses to the total of number of reject-
ed hypotheses. Assume a usual p–value is available for each 
hypothesis. Based on the p–values of the hypotheses, [1] pro-
vided a multiple testing procedure that guarantees the FDR to 
be less than or equal to a prefixed value q. In the present study 
the multiple hypotheses testing problem based on the general-
ized p–value is developed to identify the differentially ex-
pressed genes in the yeast Saccharomyces cerevisiae respond-
ing to diverse environmental transitions. Generalized p–value 
method for comparison of two exponential means has been 
applied to the raw dataset without log transformation to test 
the differential expression of individual genes. The multiple 
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hypotheses testing problem in microarray using the general-
ized p–value approach is discussed in section 2. The section 3 
develop multiple hypothesis testing  procedure using general-
ized p-value approach for microarray data analysis and dis-
cusses multiple hypotheses testing for two parameter expo-
nential means using the generalized p–value approach. Ilus-
tration of the generalized p-value approach for environmental 
microarray data is given in section 4. Our article ends with a 
brief concluding discussion. 

2 MULTIPLE HYPOTHESIS TESTING IN MICROARRAY  
The biological question of differential expression can be con-
sidered as a problem in multiple hypothesis testing in which 
m null hypotheses were simultaneously tested, where m (the 
number of genes whose expression levels were measured) can 
be considerably large. The large number of genes on a micro-
array, will lead to the identification of many genes that truly 
are not differentially expressed (false discoveries). In such sit-
uations, false discoveries (true null hypothesis declared signif-
icant) are inevitable. Thus, it is important in any multiple test-
ing problem to control the error rate of false discoveries. Mul-
tiple testing procedures consist of choosing a vector of cutoffs 
for the test statistics such that a suitably defined false positive 
rate is controlled at an a priori specified level α. A standard 
approach to the multiple testing problem consists of two as-
pects: 
1. Computing a test statistic Tj for each gene j 
2. Applying multiple testing procedures to determine which 
hypotheses to reject while controlling a suitably defined Type 
I error rate . 

Let H1, . . . , Hm be m independent hypotheses to be 
tested. Let RT be the number of true hypotheses that are incor-
rectly rejected, and let RN be the number of not true hypothe-
ses that are rejected. The total number of hypotheses rejected 
is R = RT + RN. Assume that the m0 out of the m null hypothe-
sis is true (m0 genes are not differentially expressed) and m1 = 
m − m0,  null hypothesis are false. A statistical test is per-
formed independently, let pi, i = 1, 2, . . . , m be the corre-
sponding p–values. The decision to reject (or not) can be cor-
rect or false; when the null hypothesis is rejected for one of the 
m0 variables for which it is actually true, is the false discovery 
(type I error).  
 The research in the area of multiple testing has gener-
ated a great deal of interest. Obtaining a multiple testing pro-
cedure when the hypotheses are not independent is an im-
portant problem. [2] propose very interesting and important 
results in this area. In the present study we use the general-
ized p–value approach for dealing the multiple hypothesis 
testing in environmental microarray studies. 

2.1 Generalized p-value 
The generalized p–value method is introduced in [10], has 
been used to successfully provide finite sample solutions for 
many hypothesis testing problems when no solutions are 
available using the usual approach. The generalized inference 
method was motivated by the fact that the small sample opti-
mal confidence intervals (CIs) in statistical problems involving 
nuisance parameters may not be available. For example, for 
the difference between means of two exponential distribu-
tions, or two heteroscedastic normal distributions, classical 
small sample-inference does not provide optimal test and con-
fidence intervals (see [11]). To overcome this problem, [10][11] 
introduced the concept of generalized confidence interval 
(GCI) and generalized p–value (GPV). These GPV and GCI 
can be considered as extension of the classical p–value and 
confidence interval. Interestingly, for some problems where 
the classical procedures are not optimal, GCI and GPV have 
performed well. 
 A general setup where the concepts of generalized 
confidence intervals and generalized p-values are defined is as 
follows. 

Let X = (X1, X2, . . . , Xn) be a random sample from a 
distribution which depends on the parameters (θ, η), where θ 
is the parameter of interest and η is a vector of nuisance pa-
rameters. Consider the testing of  H0 : θ≤θ0 vs. H1 :θ  >θ0, for 
a specified θ0. A generalized test variable of the form T(X; x, θ, 
η), where x is an observed value of X, is chosen to satisfy the 
following three properties: 
(1) The value of T(X; x, θ, η) at X = x is free of any unknown 
parameters. 
(2) For fixed x, the distribution of T(X; x, θ, η)  is free of the 
vector of nuisance parameters  η. 
(3) For fixed x and η, and for all t, P[T(X; x, θ, η) > t] is either 
an increasing or a decreasing function of η. 
 The property (1) ensure that the sample space of pos-
sible values of subset of T(X; x, θ, η) can be found at a given 
value of the confidence coefficient with no knowledge of the 
parameters. This property is related to the notion of similarity 
in hypotheses testing ([11]). Property (2) guarantee that prob-
ability statement based on a generalized pivotal quantity will 
lead to confidence regions involving observed data x only. 
From property (3), generalized extreme region is defined as G 
= {X : T(X; x, θ, η) ≥ T(x; x, θ, η)} (or G = {X : T(X; x, θ, η) ≤ T(x; 
x, θ, η)} ) if T(X; x, θ, η) is stochastically increasing (or decreas-
ing) in θ. The generalized p–value is defined as Sup 
H0P(G|H0), where G is the extreme region defined above. See, 
[12] for further details. 
The  concept of False Discovery Rate in testing simultaneously 
several independent null hypotheses is introduced in [1]. They 
propose a procedure that is based on the p–value for testing 
each individual hypothesis. Their procedure guarantees that 
the FDR cannot exceed a prefixed rate q. In this section, we 
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extend the multiple testing problem based on the generalized 
p–value. Which can be used for the case when ordinary p–
values are not available, one such example is simultaneously 
testing several independent    Behrens–fisher problems, which 
appear to be useful in many applications. 
 The false discovery proportion Q is ratio of RT and R 
(R ≠ 0). The value of Q is zero for R = 0 and FDR is defined as 
the expected value of Q. The procedure for controlling the 
FDR in testing several independent null hypotheses based on 
generalized p-values is given as follows. 

Let H1, . . .  , Hm are independent null hypotheses to 
be tested and p1, . . . , pm be the corresponding generalized p–
values. For a given q > 0, suppose that there exists a cumula-
tive distribution function Fi such that: 

 
𝑃(𝑝𝑖 ≤ 𝑟|𝐻𝑖)  ≤  𝐹𝑖(𝑟), 𝑟 ≤ 𝑟0 ,                   (1) 

 
for some r0 satisfying q ≤ Fi(r0), assuming that Hi is a true hy-
pothesis. Let pi* = Fi(pi), for i = 1, . . . , m and p(1)*≤ . . .≤ p(m)*  be 
the ordered values of pi*. Let H(1), . . . , H(m) be the correspond-
ing hypotheses. Define qi = iq/m and 
 

𝑘∗ = max�𝑖: 𝑝(𝑖)
∗  ≤  𝑞𝑖� .               (2) 

 
           Then, the procedure that rejects H(i) for i ≤ k* guarantees 
that  FDR ≤ q. 

3  MICROARRAY ANALYSIS USING GENERALIZED P-    

     VALUE 
In [9] log ratio of red and green expession values are modeled 
using asymmetric Laplace distribution. Asymmetric Laplace 
distribution is the difference of two exponential distributions. 
Hence the problem of testing the differential expression in red 
and green expressions values reduces to the problem of testing 
the difference in means of two exponential distributions. We 
developed the generalized testing procedure for the compari-
son of two exponential means. Comparison of the means of 
transformed data in two samples can produce a different con-
clusion as opposed to comparing the means of the original 
data. The large sample test is too liberal where as the test 
based on the generalized p–values controls the type–I error 
quite satisfactorily. The procedure to be applied on untrans-
formed data is summarized as follows: 
Let Xijg , i = 1, 2; j = 1, 2..., ni and g = 1, 2..., ng denote the ran-
dom samples of gene expression data. Where i is the red and 
green intensities, j is the number of replications and g is the 
number of genes. Let Xgij ‘s follow two exponential distribu-
tions with parameters μi and σ i, for i = 1, 2. Then the problem 
of testing the differential expression reduces to the testing of 
the equality means of two exponential means.  

 Let X follows a two parameter exponential family, 
then the probability density function (pdf)   is given by 

 

𝑓(𝑥, 𝜇,𝜎) =
1
𝜎
𝑒−

𝑥−𝜇
𝜎   ,𝑋 > 𝜇, 𝜇 ≥ 0,𝜎 > 0,       (3) 

where μ is the location parameter and  σ is the scale parame-
ter. Let X1, ..., Xn be a sample of observations from an expo-
nential distribution with pdf in (3). The maximum likelihood 
estimators of μ and σ are given by 
 

µ� =  𝑋(1),        𝜎� =  𝑋�- 𝑋(1)                                  (4) 
 

where X(1), is the smallest of the X and �̂� and 𝜎� are independ-
ent. Then 
 

2𝑛(�̂� − 𝜇)
𝜎

 ~ 𝜒22  𝑎𝑛𝑑 
2𝑛𝜎�
𝜎  ~ 𝜒22𝑛−2.            (5) 

 
Let 𝜇0� and  𝜎�0 be the observed values of �̂� and 𝜎� respectively. 
Then the generalize pivotal variable for μ is given by 
 

𝑇𝜇 = 𝜇0� − 2𝑛(𝜇�−𝜇)
2𝑛𝜎

𝜎
𝜎�
𝜎0� =  𝜇0� − 𝜒22

 𝜒22𝑛−2
𝜎0�.     (6)  

Let X be an exponential random variable with pdf f(x; μ1, σ1) 
and Y be an exponential random variable with pdf f(y; μ2, σ2), 
with pdf given in (3). Let X1, . . . , Xn1 be a sample of observa-
tions from X and Y1, . . . , Yn2 be a sample of observations from 
Y . From equation (4), the maximum likelihood estimators of 
μ1, μ2, σ1 and σ2 are given by 
 
𝜇1� =  𝑋(1),  𝜇2� =  𝑋(2) ,  𝜎1� = 𝑋�- 𝑋(1)  𝑎𝑛𝑑  𝜎2� = 𝑋�- 𝑋(2) . 
 
The the generalized pivotal variable for the difference of 
means of two exponential distributions is 
 

𝑇∗ = 𝑇𝜇1 − 𝑇𝜇2 .              (7) 
 
Where 𝑇𝜇𝑖 = 𝜇𝚤0� − 2𝑛(𝜇𝚤�−𝜇𝑖)

2𝑛𝜎
𝜎𝑖
𝜎𝚤�
𝜎𝚤0�  , i=1, 2.  From (6),  

 𝑇𝜇𝑖 = 𝜇𝚤0� −  �22
 𝜒22𝑛−2

𝜎𝚤0.�  Where  𝜇𝚤0�  and  𝜎𝚤0�   be the observed 

values of  𝜇𝚤�  and 𝜎𝚤�   respectively. Consider the problem of test-
ing,  
 

𝐻0: 𝜇1 =  𝜇2 𝑣𝑠  𝐻1: 𝜇1  ≠  𝜇2.      (8)  
 

From equation (7) the generalized test variable for testing 
𝐻0: 𝜇1 =  𝜇2 is  
 

𝑇𝑔 = 𝑇∗ − (𝜇1 − 𝜇2).                (9) 
 
The hypothesis will be rejected for a small p-value for compar-
ison of the either of the two alternative hypothesis. Hence the 
generalized p-value for the two sided test can be obtained as: 
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2 min�𝑃�𝑇𝑔 ≤ 0�,𝑃�𝑇𝑔 ≥ 0�� .           (10) 
 
3.1 Estimation of FDR 
Let N be the total number of genes, G be the total number of 
significant genes and pi is the generalized p-value of the ith 
most significant gene as estimated from generalized p-value 
technique. Then the FDR can be estimated using the following 
formula. 
 

𝐹𝐷𝑅𝐺 = 𝑀𝑖𝑛𝑖≥𝐺  �𝑁 𝑝𝑖
𝑖
�.             (11) 

4 APPLICATIONS 
In this section we illustrate the application of the multiple hy-
pothesis testing problem in microarray gene expression stud-
ies based on the concept of FDR and generalized p-values.  
For this purpose we used the yeast Saccharomyces cerevisiae 
microarray dataset  [8]. We have downloaded the microarray 
data set from http://www-genome.stanford.edu/yeast stress. 
In the present work we explored the data on genomic expres-
sion patterns in the yeast Saccharomyces cerevisiae respond-
ing to heat shock out of the different environmental parame-
ters on the expression levels of 6200 genes studied in [8].  The 
yeast cells subjected to a larger shift in temperature responded 
with larger and more prolonged alterations in gene expression 
before adapting to their new steady-state expression levels, 
relative to cells exposed to smaller temperature changes. One 
group consisted of genes whose transcript levels increased in 
abundance in response to the environmental changes, and the 
other group was comprised of genes whose transcript levels 
decreased following environmental stress. The genes whose 
transcript levels increase in response to environmental change 
will be referred to as induced, while genes whose transcript 
levels decrease will be referred to as repressed. A large set of 
genes ( ~ 900) showed a similar drastic response to these envi-
ronmental changes. 

We have performed testing for differentially ex-
pressed genes using the generalized method for the down-
loaded datasets from [8]. After getting the raw p–values for 
individual gene by using either the t–test (unequal variance) 
or by the generalized p–value method, p–values were adjusted 
for the multiplicity problem by fixing different q values using 
the equation (2). The estimated false discovery rate were com-
puted using the equation (11) and results are given in Table 1. 
For computation we used the R package. 

5 CONCLUTIONS 
In the present study we developed multiple testing procedure 
that can control the FDR using generalized p-value. From the 
Table 1 we can see that the generalized p–value method could 
find more number of genes at a particular level of q from the 

repressed dataset as well as in induced dataset. By reducing 
the level of q we can go for stringent selection of genes but 
will increase the chance of not detecting truly expressed genes. 
Thus there is a trade off between the level of false discovery 
rate and the false negative rate. In general the generalized p 
value method could identify more number of truly expressed 
genes with a fewer chance of accepting false discoveries. We 
computed expected false discovery rate by selecting 200 to 900 
genes from the control dataset and test dataset based on dif-
ferent temperature. From Table 1, it can be noted that by se-
lecting top 500 genes from the induced based on t–test (une-
qual variance), the estimated false discovery rate was 0.026, 
whereas it was only 0.015 while genes selection is carried out 
using the generalized p–value technique. Also out of 500 re-
pressed genes, based on t– test (unequal variance), the esti-
mated false discovery rate was 0.078, whereas by generalized 
p–value technique the estimated false discovery rate was 
0.046. Hence for the generalized p–value approach the ex-
pected false discoveries were only 27 and 473 are expected to 
be true positives. 
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